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Cluster size distribution in irreversible aggregation at large 
times 

P G J van Dongen and M H Ernst 
Institute for Theoretical Physics, Princetonplein 5 ,  PO Box 80.006, 3508 TA Utrecht, The 
Netherlands 

Received 28 February 1985 

Abstract. We assume that the size distribution ck(  t )  satisfies Smoluchowski’s coagulation 
equation with rate coefficients K ( i ,  j), behaving as K(i, j ) -  i”j” ( i < <  j ) ,  and find the 
following: in gelling and non-gelling systems of class I ( p  > 0) the general solution c k (  t )  

approaches for t +CC the exact solution C b k / t  ( k  = 1 , 2 , .  . .), where the bk’s are independent 
of the initial conditions Ck(O), and can be determined from a recursion relation. In class 
I I s y s t e m s ( ~ = 0 ) , c q ( t ) / c , ( t ) ~ b k  ( f + m ,  k = 1 , 2 , . . , ) , b u t t h e  bk’sdependonck(0). Only 
in the scaling limit ( k + m ,  s ( t ) + c o  with k / s ( t )  =finite; s ( t )  is the mean cluster size) does 
c k ( t )  approach a form independent of the initial distribution. Class 111, where ck( t ) /c l (  f ) +  

( t +a, k = 2,3, . . .) has not been considered here. 

1. Introduction 

One of the main problems in the theory of irreversible aggregation is to determine the 
long time behaviour of the cluster size distribution ck( t )  (k = 1,2,  . . .), which is assumed 
to be described by Smoluchowski’s equation: 

m 

4 = t  1 K ( i ,  j)cicj - ck K ( k ,  j )c j  
i + j = k  j = 1  

The coagulation coefficients K (  i, j) describe the rate at which i-clusters and j-clusters 
coalesce. 

As most coagulation kernels K ( i , j ) ,  used in the literature (e.g. Drake 1972, White 
1982) are homogeneous functions of i and j, at least for large cluster sizes, we restrict 
ourselves to such kernels and characterise K (  i, j) by exponents describing their i and 
j dependence at large i and j :  

K(ui, uj)  = u*K(i, j) (1.2) 

K( i , j )= i+ j”  j >> i, A = p + v (1.3) 

K(x, l - x ) = x + { l + K , x + ’ +  . . . }  x + w ,  p‘>O. (1.4) 

The case p > 0 will be referred to as class I, p = 0 as class 11, and p < 0 as class 111. 
In class I and class 111 the rate constants for reactions of large with large, respectively 
large with small, clusters are dominant. In the intermediate class I1 the rate constants 
K(i, j) for aggregation of large with large and small with large clusters are of equal 
size. The reactivity of large clusters should not increase faster than their size; thus 

0305-4470/85/142779+ 15$02.25 @ 1985 The Institute of Physics 2779 



2780 P G J van Dongen and M H Emst 

A s 2, vs 1 ,  but no restrictions are imposed on p. It was further shown (e.g. Ernst et 
a1 1982) that A > 1 corresponds to gelling, and A < 1 to non-gelling processes. Equation 
(1.4) gives a more detailed specification of the kernels, required in our later discussions. 
We remark that our results will be valid not only for exactly homogeneous kernels 
(1.2), but also for asymptotically homogeneous kernels, with the property K ( i ,  j )  = 
x(i,j) ( i , j  >> l ) ,  where x ( i , j )  = lima+m a-”K(a i ,  aj)  is a homogeneous function satisfy- 
ing (1.2), (1.3) and (1.4). 

To discuss long time properties two different methods have been used in the 
literature, which lead to partially complementary and sometimes conflicting results. 
One method uses scaling functions (Friedlander 1977, Leyvraz and Tschudi 1982); the 
other one a recursion relation (Ziff et a1 1982, Leyvraz 1984). The scaling function 
method (SFM) describes the dominant time dependence at large t, whereas the recursion 
relation method (RRM) only gives the limiting value of ck( 1 ) /  c,( t )  as t + CO, but not 
the approach towards this value. On the other hand, the SFM makes only predictions 
about large k values, whereas the RRM makes predictions about all k values. 

In the recursion relation method one has been looking for asymptotic solutions of 
the form ck( t ) / c , (  t )  + bk ( k  = 1,2,  . . .) as t + CO in non-gelling systems (Leyvraz 1984), 
where the bk’s are independent of ck(o) ,  and for a special post-gelation SOlUtiOII of 
the form C k ( t )  = c , ( t )bk  ( k  = 1 , 2 , .  . .) in gelling systems (Ziff er al 1982). In all these 
cases the bk’s are determined by the same recursion relation. 

In the scaling function method for non-gelling systems (‘theory of self-preserving 
spectra’) one assumes that the size distribution approaches for large t and large k a 
scaling form c k ( t )  - s - * q ( k / s ) ,  where s( t )  is the mean cluster size, increasing as 
s( t )  - t Z  ( t  + CO). The scaling ansatz, combined with Smoluchowski’s equation, yields 
a nonlinear integral equation for the scaling function q ( x ) .  In gelling systems the 
solution of Smoluchowski’s equation approaches only a scaling form as t approaches 
the gel point t ,  from below. As we are interested in the long time behaviour, the scaling 
function method does not give much useful information here. 

The purpose of this paper is (i) to show that the recursion relation method is 
describing the long time behaviour of ck( t )  for general initial distributions in gelling 
and non-gelling systems of class I, and (ii) to show that the recursion relation method 
is not correct for class I1 and I11 systems. 

In point (i) we extend (see § 3)  the results of Leyvraz for the special kernel 
K (  i, j )  = ( (0 < w < f) to general homogeneous kernels of non-gelling class I systems. 
For gelling systems we have two types of new results in § 4. In the literature only the 
special post-gelation solution, c k (  t )  = bkc,( t )  for t L t,, has been considered for a few 
special coagulation kernels, in particular for K ( i ,  j )  = (U)“ (5 < w zz 1) (Leyvraz and 
Tschudi 1982, Ziff et a1 1982). In this paper the special solution is extended to all 
homogeneous kernels of class I. Furthermore, we show that the solution C k ( f )  for 
general initial conditions approaches the special post-gelation solution as t + m. The 
large k behaviour of bk obtained from this method is in agreement with the results of 
the scaling function method for non-gelling class I systems. 

Regarding point (ii) we shall see that c k (  t ) / c , (  t )  + 03 as t + CO in class 111, and that 
in class 11, ck( t ) / c , (  t )  ( k  = 1,2,  . . .) does in general approach a finite constant as t + CO. 

However, the constants depend on the initial distribution and cannot be determined 
from the recursion relation method (see § 4). This result disproves an earlier result of 
Leyvraz (1984) for the special class I1 kernel K ( i , j )  = i“ +j”  (O< A < l ) ,  which was in 
conflict with the predictions of the scaling function method, as was shown by van 
Dongen and Ernst (1985b). 
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In P 5 we explicitly show for a few examples that the values for the 7 exponent, 
defined as bk - k-’ ( k  + CO), are different in the scaling function-and the recursion 
relation method. 

We start our discussion in 0 2 by reviewing the derivation of the recursion relation, 
and show that it contains an implicit assumption, which is fulfilled in class I (see 0 3) 
and violated in class I1 (see 0 4). In order to test the implicit assumption for class I1 
systems, we require some results from the scaling function method obtained by van 
Dongen and Ernst (1985a), which are summarised in appendix 1. 

2. Derivation of the recursion relation 

We review the derivation of the recursion relation, that has been used in two different 
contexts: gelling and non-gelling systems. 

First we consider gelling systems. Here there exists a special post-gel solution 
ck( t )  = Cl(t)bk ( k  = 1,2 , .  . .), where the bk’s satisfy a recursion relation. One of the 
main goals of this paper is to show that the size distribution in gelling systems for 
arbitrary initial distributions shows universal behaviour, independent of ck(o), namely 
it approaches the special solution, in the following sense 

where bk ( k  = 1,2, . . .) are bounded positive numbers with b, = 1. 
First we derive the recursion relation for bk. We start with the observation of Ziff 

et a1 (1982) that the coagulation equation (1.1) admits an exact solution with a simple 
time dependence C k ( f ) = C k ( f c ) / [ l + P ( f - t , ) ] ~  bkc l ( t ) ,  where b k = c k ( t c ) / c l ( t c )  ( k =  
1,2, .  . .) are positive numbers and /3 and t ,  unknown constants. It corresponds to a 
special set of initial conditions Ck(0). Inserting this solution into (1.1) yields 

The unknown P may be eliminated using (2.2) for k = 1, and the following recursion 
relation results 

m 

R ( b k ) = i  K ( i , j ) b i b j - b k  c (K(k,J ) -K( l , j ) )b j=O 
i + j = k  j = l  

where bk ( k  = 1,2, . . .) are positive numbers and b, = 1. This exact solution has the 
remarkable property 

i.e. the total mass, contained in finite size clusters decreases in time for t > t,. Therefore 
we are necessarily dealing with gelling systems ( A  > l),  where the above ck( t,)/[ 1 + 
P (  t - t , ) ]  represents a post-gelation solution, describing a phase with a non-vanishing 
gel fraction G( t )  = 1 - M (  t) ,  and t ,  may be identified as the gel point. 
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As we shall show later on, the solution bk of the recursion relation at large k, has 
algebraic k-dependence, i.e. 

bk = Bk-' k+m.  (2.5) 

This relation defines the T exponent obtained from the recursion relation, which is the 
quantity of main interest in this paper. Since the total mass is conserved, I; kck( t )  = 1, 
below the gel point ( t  S &),we have 1 = Z kck( tc) - Z kbk which implies T > 2. It turns 
out that the exact solution c k (  t )  = bk/( a + p t )  in non-gelling systems ( A  < 1) corresponds 
to an infinite sol mass, Z kck( t )  - ( a  + pt)- '  kbk + m since T < 2. This solution is 
therefore physically unacceptable. However, asymptotic solutions of the form c k (  t )  = 
c1( t)bk ( t  + CO) could be physically acceptable in non-gelling systems, because 
ck( ?)/cl( t )  may approach bk non-uniformly in k, so that Z kck( t )  = 1, whereas Z kbk + 00 

since T < 2. 
Next, we turn to non-gelling systems. Here Leyvraz has argued that Smoluchowski's 

equation for the product kernel K ( i ,  j )  = (U)" (0< o < t ;  class I) and sum kernel 
K( i, j )  = i" +j" (0 < w < 1 ; class 11) admits an asymptotic solution of the form (2.1), 
where the bk's are independent of the initial distribution, and determined by the 
recursion relation (2.3). A second goal of this paper is to extend Leyvraz's result to 
coagulation kernels of class I and to show that the recursion relation method is not 
valid for class I1 and I11 kernels. 

As a criterion to decide whether asymptotic solutions of the form (2.1) are possible 
for the kernel K (  i, j) under consideration, we use the results from the scaling function 
method. In this context the most important results are (see appendix 1): cp(x)- 
exp(-x-"')(x + 0) in aggregation processes of class I11 ( p  < 0), and ~ ( x )  - X-' (x + 0) 
in class I and 11. These results have the following implications for the size distribution 
starting from general initial distributions: in class 111 systems, c k (  t ) / c , (  t )  + CO ( t  + m; 
k > j ;  k, j fixed, but large), and in all non-gelling systems of class I and 11, c k (  t ) / c j (  t )  - 
( i l k ) '=  constant ( t - c o ;  k, j fixed, but large). Thus, class I11 processes do not admit 
solutions, satisfying (2.1). We, therefore, concentrate on class I and class I1 systems. 
If we make the additional assumption that the last asymptotic relation holds for all 
j = 1 , 2 , .  . . , then one would have to look in class I and I1 for asymptotic solutions 
with property (2.1). 

The next question to be decided for gelling and non-gelling systems is whether the 
asymptotic solution bk in (2.1) can be determined from the recursion relation (2.3). 
Following Leyvraz we introduce v k (  t )  3 c k (  t ) / c l ( t )  and substitute it into the coagulation 
equation ( 1 . 1 )  with the result: 

( l / C i )  dvk/dt=R(vk). (2.6) 

As one is interested in those systems for which v k ( t )  approaches a constant bk, the 
LHS of (2.6) is set equal to zero, and the v k  equation reduces to the long time recursion 
relation, R(bk) = 0. However, the LHS of (2.6) does not necessarily approach zero, 
since in irreversible aggregation cl( t )  + 0 as t + CO. Implicitly one has therefore made 
the additional assumption 

( l / C i ( t ) )  dvk/dt+O t+m.  (2.7) 

The question whether this assumption is satisfied, i.e. whether the recursion relation 
(2.3) has any bearing on the factors bk, will be discussed for class I systems in 0 3, 
and for class I1 systems in 0 4. 
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3. Class I systems 

3.1. Non-gelling systems 

In this section we argue that the limiting ratio bk = limt+m ck/c1 for non-gelling models 
( A  < 1 )  of class I ( p  > 0) satisfies the recursion relation (2.3) provided the bk’s satisfy 
the strict inequalities: 

El < Ek < 00 k = 2 ,3 , .  . . , (3 .1)  

Here we have defined 
m m 

Ek = lim K ( k , j ) c J / c l  = K ( k ,  j ) b ,  
l+m,=l J = 1  

(3.2) 

where it is assumed that the infinite sums converge. The condition Ek > El ( k  = 2,3, . . .) 
is trivially fulfilled if K ( 1 ,  j )  < K ( k ,  j ) .  Cases where the inequalities (3.1) are not 
fulfilled will be discussed at the end of this section. 

In order to show that Smoluchowski’s equation reduces to the recursion relation 
(2.3) as t + CO, we introduce 

D 

&( t )  = dt‘ U k (  t ’ )  (3.3) lo‘ U k ( t )  = K ( k , j ) c , ( t ) ,  
J = 1  

and solve the kinetic equation ( 1 . 1 )  with the result 

c k  ( t )  = exp[-Sk ( ?)I( c k  (0) + lo‘ d t ’ f K ( i, j )  C, ( t ’ )  cj ( t ’) exP[ Sk ( ?’)I). (3.4) 
i + j = k  

The long time behaviour of s k (  t )  can be determined from c1( t )  ( t  + CO), which in turn 
is given by ( 1 . 1 )  for k =  1: 

c, = -cl(+,= - (c , )ZE,  t + m  (3.5) 
provided E ,  < 00. Thus, we have in (3 .3)  as t + CO: 

provided Ek <CO. With the help of (3.6) and (3.7) the dominant long time behaviour 
of the t integral in (3.4) can be estimated as t - a ‘ ( k )  with a ( k )  = -1+E,/E,. This 
quantity diverges as t + CO since Ek > El .  Thus, ck(0 )  may be neglected in (3.4), and 
the equation reduces to the long time form 

r t  

After differentiation of (3.8), yielding 

we obtain, using (2.1), (3.5),  (3.6) and (3.7): 

f K ( i , j ) b i b j = ( E k - E l ) b k  
i+j=k 

(3.9) 

(3.10) 

which is in fact the recursion relation (2.3),  R ( b k )  = 0 with b, = 1 .  The cluster size 
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distribution behaves as C k (  t )  - C 1 (  1 )  bk - Cbk/ f ( k  = 1 , 2 ,  , . , , f += M), where Cbk/ f iS an 
exact, but unphysical solution of Smoluchowski's equation containing infinite mass. 
Thus, in non-gelling systems of class I, satisfying the inequalities (3 .1) ,  the factors bk 
obey the recursion relation ( 2 . 3 ) .  This implies in particular that in such systems the 
assumption ( 2 . 7 )  is correct. 

In order to determine the asymptotic solution of the recursion relation, we multiply 
(2 .3)  with k, and sum over k to obtain the following representation of the recursion 
relation: 

k k 
E ,  j b j =  2 i K ( i , j ) b i b j  

J = 1  i = l  j = k - i + l  
(3 .11)  

Next we substitute the asymptotic form ( 2 . 5 )  into (3 .11) .  In non-gelling class I models, 
one finds a consistent solution only if one assumes that T < 2.  In this case (3.1 1) reduces 
to 

B E l k 2 - ' / ( 2  - T )  = B2k3+"" J, dx I , - ,  d y x ~ ( x ,  Y)(XY)-' ( 3 . 1 2 )  

Comparison of the dominant orders in k gives T = 1 + A  in agreement with the result 
from the scaling function method and consistent with the assumption ( 3 . 1 ) ,  i.e. .Ek < M. 

The special case, A = 1 ,  leads to bk - k-* log k, which is more complicated and will 
not be discussed here. 

So far the general results. In special cases, e.g. when no monomers are present in 
the system ( c l ( 0 )  = 0), or when the conditions (3.1) are violated, results different from 
( 2 . 1 )  will be found. As an example we have considered in appendix 2 a system where 
dimers, instead of monomers, are least reactive, i.e. K ( 2 , j )  < K ( 1 ,  j )  and K ( 2 ,  j )  < 
K ( k , j ) ( k > 2 ; j S  l)andc,(O)#O. Evenifcl(0)#O,onefindsthatCk(t)- t - P ( k ) ( t + C O ) ,  
with P ( 2 n )  = 1 and P ( 2 n  - 1 )  > 1 ( n  = 1 , 2 , .  . .). In the final stages of the aggregation 
process all odd cluster sizes have disappeared from the system, and only even cluster 
sizes remain. The limiting ratio bk = lim,4m ck( ? ) I C , (  f )  satisfies a recursion relation 
similar to ( 2 . 3 ) ,  namely 

r l  00 

k + m .  

( 3 . 1 3 )  

which is to be solved subject to the initial conditions b ,  = 0, b2 = 1 .  As one sees, bk # 0 
only for k=even, and b2n behaves asymptotically as b Z n -  n-' with T =  1 + A .  The 
cluster size distribution approaches again the exact, but unphysical solution ck( t )  = 
c 2 ( f ) b k  = C b k / t  ( k  = 1 , 2 , .  . .), with bk determined by (3 .13) .  Included in this example 
is the special case where c1 (0) = 0 (and possibly K ( 1 ,  j )  < K ( 2 ,  j ) ,  as the monomeric 
rate constants are irrelevant in a system without monomers). 

The previous example may be generalised to a situation where I-mers are least 
reactive, K ( l , j )  < K ( k , j )  ( k  # I ;  j = 1 , 2 , .  . .), and q ( 0 )  # 0. In this case the outcome 
is that multiples of I-mers are the only surviving species in the final stages of the 
aggregation process. 

3.2. Gelling systems 

As we are interested in the long time behaviour of c k ( t )  in gelling systems of class I 
( p  > 0; A > l ) ,  we are necessarily dealing with post-gel solutions. A characteristic 
property of a post-gel solution is that it carries a non-vanishing mass flux (k + CO) 
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transferring clusters with sizes < k to those with sizes > k, in the limit as k + 00. This 
is the cascading growth process by which sol particles are transformed into gel. 
According to Leyvraz and Tschudi (1982) and van Dongen and Ernst (1985a) the 
mass flux is 

(3.14) 

It must be finite and non-vanishing at all times t >  t, ,  where t ,  is the gel point. The 
RHS of (3.14) can only be non-vanishing if C k ( t )  has a sufficiently slow (algebraic) 
decay at large k, i.e. if c k (  t )  = A( t)k-'  (k-. 03). Thus, 

t )  = -A2( lim k3+A-2r  ) lo1 dx dyxK(x, Y)(xY)-' (3.15) 

is bounded and non-zero only if T = f ( A  + 3) .  This implies again c k (  t ) /  c,( t )  = ( k/j)-T 
( k , j  >> 1). We therefore make the assumption (2.1) that positive constants bk exist 
such that c k /  cl + bk ( t  -+ 03) for general initial distributions. The asymptotics ( k  + 03) 

of bk are then given by (2.5) with T =;(A 1 3 ) .  
The assumption (2.1) in gelling systems is supported by the exactly solvable model 

K (  i , j )  = i j ,  with A = 2. In this case one finds (Ziff et a1 1983) the exact post-gel solution 
( t >  & = I ) :  c , ( t ) = l / e t  and c k ( t ) / c l ( t ) =  b k = k k - 2 e 1 - k / k !  with bk=ek-5 /2 / (27r )1 /2  
( k  + CO) corresponding to the special monodisperse initial distribution and one can 
show for general initial distributions C k ( 0 )  that c k (  ?) /c l (  t )  = bk( 1 + O( r - 2 ) )  as t + 00, 

where the leading term is independent of C k ( 0 ) .  The 0 ( t C 2 )  correction term depends 
upon the initial conditions via cl(0), c2(0) and ~ ~ ( 0 ) .  

The validity of the recursion relation, R (  b k )  = 0, for general initial conditions can 
be shown using virtually the same arguments as in the previous section. They will not 
be repeated here. In order to determine the asymptotic solutions bk ( k + m )  of 
R ( b k )  = O ,  or equivalently of (3.11), we insert the ansatz b k =  Bk-' ( k + m )  into (3.11), 
with the result 

1 --x k - i o  

(3.16) 

We conclude that T = ;(A + 3), in agreement with the T exponent in the scaling function 
method. 

In summary, for gelling systems we have shown in this subsection that the solutions 
of Smoluchowski's equation for general initial distributions converge for long times 

The examples, given in the previous section, where the conditions (3.1) are not 
to the exact POSt-geI Solution C k (  t )  = Cl( t)bk, O f  C k (  t ) / C l (  C )  bk ( k  = 1, 2 .  . . . ; C -+ CO).  

fulfilled, are equally relevant for gelling and non-gelling systems. 

4. Class I1 disproof of the recursion relation 

The arguments of § 3, leading to the recursion relation (2.3), break down because the 
first and/or the second inequality in (3.1) is violated. Ek = CT==, K ( k ,  j ) b j  in (3.1) and 
(3.2) is divergent in class I1 since T <  1 + A  (see below (A1.4)). As we shall see, the 
ratio c k (  t ) /  c1( t )  as t + CO in class I1 aggregation processes does not approach universal 
behaviour, independent of the initial distribution. Consequently, the asymptotic 
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property (2.1) with ck( t ) / c , (  t )  + bk ( t  + a; k = 1,2, . . .) with bk determined by the 
recursion relation (2.3) does not hold. 

Before presenting the general arguments we briefly discuss two special examples 
of class I1 processes without universal long time behaviour. First, we consider the 
kernel K ( i ,  j )  = i +j, for which Smoluchowski's equation can be solved exactly 
(Golovin 1963, Ziff et a1 1984). To illustrate our point it is sufficient to solve (1.1) for 
k = 1 and k = 2, yielding 

c , ( t ) =  c,(O) exp{-[t+Mo(0)(l-e-')]} 

c 2 ( t )  =[c2(0)+cC:(o)(1 -e-')] exp(-[ t+2~,(0)(1 -e-r)]} 
(4.1) 

and calculate the following limits of vk = c k / c l :  

lim v 2 ( t )  = b2 =[c,(O) + ~ 2 ( 0 ) / ~ 1 ( 0 ) 1  exp[-M0(O)1 
r+m 

Thus the b,'s still depend on the initial distribution, and the LHS of (4.2), namely 
( I /  c1) r;k + constant ( t  + a, k = 2, 3, . . . ), only vanishes for the special monodisperse 
initial condition, C k ( 0 )  = & I ,  which is the only case for which the recursion relation is 
correct. Next, we consider the special example of the sum kernel K ( i , j )  = i" +j"  
(0 < A  < l ) ,  for which van Dongen and Ernst (1985b) have shown that the additional 
assumption (2.7) is violated and the value (Leyvraz 1984) for the r exponent, rR = 1 ++A,  
as obtained from the recursion relation, is in general incorrect. 

For general class I1 processes we follow the same procedure as for the sum kernel, 
i.e. we try to estimate the long time behaviour of LHS (2.6) under the assumption that 
the size distribution is described by the scaling ansatz, c k (  t )  - t-"cp( k f - ' ) .  This requires 
the explicit form of the scaling function cp(x) as predicted by Smoluchowski's equation. 
With that result, we are able to show that the LHS of (2.6) approaches a constant or 
diverges as t + co. In either case the recursion relation is irrelevant for the description 
of the long time behaviour of c k ( t )  in aggregation processes of class 11. The details 
go as follows. We represent the approach of vk( t )  = c k (  t ) / c l (  t )  to its limiting form bk 
as vk = bk+( kt- ' )  with +(O) = 1. For large k, where bk = Bk-' ( k  + co) this representation 
is simply a different form of the scaling ansatz with q ( x )  = Bx-'+(x) ,  so that 

with y = (2 - T)Z. Comparison of (4.3) with ck/cI = vk - k-'$( kt- ' )  shows that c, - t r y  
( t + ~ ) .  The time dependence of the LHS of (2.6) for large k and large t can be 
estimated using (4.3) with +(x) given in (AlS) ,  where two cases have to be distin- 
guished. 

In case (a):  1 + A  - m < r < 1 + A ,  where m = min(F', 1) we deduce from (A1.5a) 
that +'(XI- I ( r )x* - '  with 1(7) defined in (A1.7). The result is 

I ( 7 )  (4.4) ( 1 / ~ , ) ~ ~  - ~y-z-lkl-'+'(k--z) - k'+"-2' 

where the relations y = z(2 - r )  and z = 1/( 1 - A )  have been used. Thus, the LHS of 
(2.6) approaches a time-independent non-vanishing constant, so that the additional 
assumption (2.7) is violated and the recursion relation (2.3)  is not valid. 
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If one makes the ad hoc assumption, that the LHS of (2.6) vanishes, one imposes 
according to (4.4) the condition 

Z ( T ) = o  (4.5) 

where I ( T )  is defined in (A1.7). The solution of this transcendental equation, which 
we indicate by TR,  does not seem to have any relationship to the T exponent, which 
follows from Smoluchowski's equation to be 7 = 2 - p A /  w (see (A1.4)). The possibility 
that T = 2 - P A /  w equals 7~ for general class I1 kernels belonging to case (a): 1 + A - m < 
T < 1 + A ,  can be excluded by counter examples, as will be shown in the next section. 

In appendix 3 we have analysed the large-k solution of the recursion relation (2.3), 
R( bk)  = 0, for class 11 kernels, and we have shown that its asymptotic solution bk - k- 'R 

is also determined by the transcendental equation (4.5), as it should. It only shows 
that our results are internally consistent. 

In case (b), where T < 1 + A  - m, one sees that @(x) - x"-l, implying that the LHS 
of (2.6) diverges as t + CO, i.e. 

( l / c l ) + k -  k m b k S l r A - - m - - r  + 00 t+CO.  (4.6) 

Thus, assumption (2.7) is violated, and the long time behaviour of Y k (  t )  is not described 
by the recursion (2.3) .  In case (b) the possibility of a vanishing prefactor is c1 priori 
excluded by the results in (A1.7). An example of a case (b) kernel with a well defined 
exponent T = 2 - P A /  w will be shown in the next section. 

In our calculation of the LHS of (2.6) for class I1 kernels we have taken into account 
the scaling function without possible corrections to scaling, e.g. ck( t )  - 
IC-'+( kt-')  + k-T'q?l( kt-') + . . . with T '>  7. One readily convinces oneself that such 
extra terms to the RHS of (4.4) are at most of relative order k T - T ' +  0 as k +  CO, and do 
not affect the conclusions of this section. 

5. Comparison of T and T~ 

This section deals exclusively with special examples of class I1 kernels. We shall 
compare the exponents T = 2 - P A /  w, obtained from Smoluchowski's equation ( 1 . 1 )  
using the scaling function method, with the exponent 713, obtained from the recursion 
relation (2.3). We show that the two exponents are different in general. 

Without actually solving the integral equation for the scaling function q ( x )  and 
calculating pA = 5 dx x ^ q ( x )  we can determine upper and lower bounds on T, and 
compare these with TR. 

In this manner van Dongen and Ernst (1985b) have already shown for the sum 
kernel, K (  i,  j )  = i A  + j A ( O  < A < l),  that the exponent TR = 1 +;A, as obtained by Leyvraz 
from the recursion relation, differs from the actual 7 exponent, r = 2 - p A /  w, at least 
for A < ho = 0.366. 

As a second example of a class I1 kernel we consider K (  i,  j )  = ( i  + j ) ^  with A < 1. 
An upper and lower bound on T can be derived as follows. Consider the inequalities 
for A < 1 and x, y positive 

(5.1) 

These inequalities are applied to (A1.2) with a = A for the kernel under consideration 
and yield: 

(5.2) 

2"(2 - 2"(xy)" (x + y)-A s xA + yA - (x  + y ) ^  < ( x y ) ^ ( x  + y)-A. 

2A-'(2-2A)p2, < (1 - ,+)PAW < f p : .  
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When applied to r =2-pA/w,  we obtain the following bounds for all A < 1: 

r-< r < r, (5.3a) 

with 

r- = 2 -2’-*( 1 - h) / (2  - 2 A )  r, = 2A. (5 .3b)  

The lower bound reduces to r-=2A -2A2(log2)2 as A -0, and (5.3) shows that 
T = 2A +O(A2) as A + 0, which approaches the result r = 0 for the constant kernel 
K ( i ,  j )  = 1. 

One can obtain a better upper bound on r for A 3 0 . 7  using the inequality valid 
for A > (for A < $ the inequality is reversed): 

( x + y ) 2 A - x 2 A  - y 2 k ( 2 2 A -  2) ( X Y )  A 

T < r: = 2 - (2A - 1)(22A - 2). 

(5.4) 

( 5 . 5 )  

yielding for all A 6 1 

Table 1 shows that one can obtain fairly good estimates for the T exponent without 
actually calculating the scaling function. 

Table 1. Upper and lower bounds on the r exponent (equation (A1.4)) compared to the 
rR exponent from the recursion relation for K( I, j )  = ( i + j ) *  ( 0 s  A S 1 ) .  Above the dotted 
line TR exceeds the best upper bound on T. 

o.o+ 
0.1 
0.2 
0.3 

0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.00 
0.19 
0.36 
0.52 

0.66 
0.79 
0.91 
1.02 
1 .11  
1.20 
1.28 

0.00 
0.20 
0.40 
0.60 

0.80 
1 .oo 
1.20 
1.37 
1.42 
1.46 
1.50 

. . . . . . . . . . . . . . . .  

0.00 
0.25 
0.44 
0.61 

0.77 
0.91 
1.04 
1.17 
1.29 
1.40 
1.50 

. . . . . . . . 

Next, we turn to a discussion of the recursion relation. The upper bound T, = 2 4  
also shows that K ( i ,  j )  = ( i + j ) A  with A < O  corresponds to case (b), namely T <  
1 + A  -min(p’, 1) = A ,  discussed above (4.6). This is so, since p ’ = m  according to its 
definition (1.4). Hence, the LHS of (2.6) diverges, and so does the infinite sum occurring 
in the recursion relation (2.3). Thus, for A <O, the recursion relation does not exist. 

The kernels K ( i , j )  = ( i + j ) A  with A > O  belong to case (a), since A < r <  1 + A .  In 
this T interval the asymptotic solution of the recursion relation is given by (4.5) as the 
root of the transcendental equation, Z(T) = 0, where I (  T) can be calculated from (A1.7), 
and yields 

(5.6) 
We note that T~ = 1 is in general not a solution of this equation. This can be seen by 

I( T) = B( 1 - 7, T - 1 - A ) - $ B (  1 - T, 1 - T) = 0. 
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inserting T = 1 + E ( E  + 0) into (5.6). The terms of O( E’) only cancel if y + I)( - A )  = 0, 
i.e. if A = A0=0.567.. , , where y is Euler’s constant and +(x) = T ’ ( x ) / T ( x ) .  The 
solution T~ of (5.6) may be determined graphically. There exists only one solution in 
(A,  1 + A )  which is increasing monotonically with A and having the limiting behaviour 

(5.7) 

Comparison with (5.3~1, b )  shows that T < T + S  T R  provided TR> 2A. It follows from 
(5.6) that T R  = T+ = 2A for A =) only. Thus, we have shown that T < T R  for all A Sf. 
A more detailed comparison is given in table 1. 

With the two classes of counter examples of this section we have shown that the 
solution of the recursion relation (2.3) has in general no relevance for the long time 
behaviour of the size distribution in class I1 systems. 

6. Conclusion 

The most important and new results of this paper have already been extensively 
described in the introduction. Here we only summarise the most important conclusion. 
In gelling and non-gelling systems of class I, defined through (1.3) with /.L > 0, the 
cluster size distribution approaches for long times to the exact solution Cbk/ t ( k  = 
1,2, .  . ,) or C k ( t ) / C l ( t )  + b k  ( k  = 1,2, .  . .), where the bk’s are independent of C k ( 0 )  and 
determined by the recursion relation (2.3), R(  b k )  = 0 with b, = 1. 

The results obtained both in the scaling function method, and in the recursion 
relation method, have to some extent the status of a conjecture, since the major 
arguments presented are only based on self-consistency , and cannot rule out completely 
different asymptotic behaviour. However, for the exactly solved models in class I and 
I1 our predictions are confirmed in full detail, as will be shown below. In class I11 
no exactly solved models are available. 

It is worthwhile to stress that class I systems (gelling and non-gelling) show a more 
universal long time behaviour than class I1 systems. We illustrate this through three 
exactly solved models. 

In gelling class I models, K (  i , j )  = ij ( A  = 2, p = l ) ,  we have already seen in 0 3.2 
that c k (  ?)/cl(  t )  = b k (  1 -k o( t - ’ ) )  as t + 00 for k = 1,2, . . . with bk = k k - 2 e ’ - k /  k ! ,  
independent of C k ( 0 ) .  Unfortunately, non-gelling models of class I ,  that can be solved 
for general c k ( o ) ,  are not available. 

Next we consider the class I1 models K (i, j )  = i + j  ( A  = 1, ,U = 0) and K (  i, j )  = 1 
( A  = 0, /.L = 0), that have been solved for general initial distributions. For the sum 
kernel we have already shown in (4.2) that C k ( f ) / q (  1 )  for k = 2,3, .  . . approaches a 
non-universal constant depending on the initial distribution. However, in the scaling 
limit the size distribution approaches for general initial distributions a universal scaling 
function, namely c k ( t ) = ( s ( t ) ) - ’ q ( k / s ( t ) )  for k + m ,  s(t)+m and k / s ( t )  =constant, 
where q ( x )  = ( ~ T ) - ’ / ~ x - ~ / ’  exp(-x/2). The expression for q (x )  can be derived from 
the exact solution (Ziff er al 1984), where the mean cluster size is given by s( t )  = 
M 2 ( t ) / M , ( t )  = ~ ~ ( 0 )  e2‘ with ~ , , ( t )  =Z k n C k ( t ) .  

For the constant kernel K ( i , j )  = 1 one easily shows that c , ( t ) / c , ( t )  approaches a 
constant, depending on c k ( o ) ,  whereas in the scaling limit k + m ,  s ( t ) -  t + c c  with 
kt-’ = fixed, the size distribution approaches C k ( t )  2: F 2 q ( k / s )  where q ( x )  = e-x. 
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Appendix 1 

This appendix contains a short summary of results from the scaling function method 
obtained by van Dongen and Ernst (1985a), relevant for non-gelling models. 

In non-gelling models ( A  < 1) the size distribution approaches for large k and large 
f the scaling form 

c k ( t ) = s - * q ( k / s ) .  (A1.1) 

Using Smoluchowski's equation, we can derive an integral equation for the scaling 
function q(x) .  By separating the x and t dependence, it follows that Ss-h = w or 
s( t )  - t Z  ( t  + a; z = 1/(  1 - A ) ) ,  where w is a separation constant. Furthermore, the 
moment equations of the q ( x )  equation yield: 

(I-.)Paw=i{;dx ~ ; d Y K ( x , Y ) ~ ( x ) o ( ~ ) [ ~ . + y .  -(x+Y)D1 (A1.2) 

where the cvth moment is defined as 

pa = lom dxx"q(x).  (A1.3) 

From the integral equation one shows that cp(x) decays exponentially at large x. At 
small x, q ( x )  = Bx-' (x  + 0) in class I and I1 systems, whereas in class I11 systems 
q ( x )  - exp(-x-'"')(x + 0). 

In the non-gelling class I models ( p  > 0, A < l ) ,  the T exponent is given by T = 1 + A. 
In class I1 systems ( p  = 0) the T exponent is given by 

(A1.4) 

and depends through the moment ph on the explicit form of the (unknown) cp(x), and 
satisfies T < 1 + A .  To proceed we have to distinguish two cases: (a) 1 + A  - m < T < 1 + A ,  
and (b) T < 1 + A  - m, where m = mi&', 1) with p' defined by (1.4). The corresponding 
small-x behaviour is 

7 = 2 -PA/ w 

Bx-'( 1 + bxl+h--T +. . .) case a 
~ ~ - 7 ( i + b ~ m + .  . .) case b (A1.5) q ( x )  = Bx-'+(x) = 

where 
BI(T)/[(l+A - T ) W ]  case a 

case b, ,U'< 1 
case b, p '>  1 

(A1.6) 

with Kl is defined in (1.4) and 

dx[K(l ,  x)-x^]x-'-i dxK(x ,  1 -x)[x(l  -x)]-' ) . (A1.7) 
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Appendix 2 

In this appendix we discuss, as an example, the complications arising in class I ( p  > 0) 
models if dimers, instead of monomers, are least reactive, i.e. if K(2, j) < K ( k , j )  
( k  # 2, j = 1,2,  . . .). In this case it is intuitively clear that dimers are the rate-determining 
species, and the obvious ansatz is 

C k ( f ) / C 2 ( f ) +  bk ?+a (A2.1) 

where the bk are finite, non-negative constants. 
First we show that b, = 0. In order to obtain a contradiction, assume that b, > 0, 

i.e. that c1( t )  - c 2 ( t ) .  In this case we may copy the discussion of 0 3, and (3.4) implies 
c 2 ( t ) / c l ( t )  - t " ( * )+ 00 ( t  + CO), with a (2)  = 1 - E 2 /  E l ,  in contradiction with our assump- 
tion b ,  > 0. We conclude that b, = 0. In order to calculate the asymptotic time depen- 
dence of c l (? ) ,  we define again 

(A2.2) 

and approximate (1 .1)  for k = 2 as follows 

1. 2-2K(1, -1 ~ ) ( C ~ ) ~ - C ~ U Z ' :  - ( ~ 2 ) ~ E 2  t + m  (A2.3) 

Knowing c2( t )  ( t  + 00) we can calculate Ck(t) for general k. Consider, first the case 

1.1 = - C 1 u 1  == - c l ( E 1 / E 2 t )  ? + W .  (A2.4) 

It follows that c , ( t ) -  t - B ( l ) ( t + m ) ,  with p(1) = E 1 / E 2 .  In general, we define p ( k )  by 

ck( 2 )  - ? - P ( k )  ? + C o .  (A2.5) 

The exponent P ( k )  is determined by a simple recursion relation. To see this, consider 
(3.41, where now s k ( t ) - ( E k / E 2 ) l o g  t (?+a). If the integral in (3.4) converges, i.e. 
if E k / E 2  < ( p (  i )+ p ( j )  - 1) for all i , j  with i + j  = k, then one finds C k ( t ) - e x p ( - S k ( f ) ) -  
t - P ( k ) ,  with p (  k )  = E k / E 2 .  Alternatively, if the integral in (3.4) diverges, then p(k) = 
min { p ( i ) + p ( j ) - l } ,  with i + j =  k. These results may be combined into a single 
recursion relation for p ( k ) ,  namely 

(A2.6) 

This recursion relation shows that p (  k )  = 1 if k is even, and p (  k )  > 1 if k is odd. This 
implies bk > 0 for even values of k and bk = 0 for odd k values. 

The factors bk, which determine the Ek and, hence, the exponents p(k),  may be 
calculated from a recursion relation. In an analogous fashion to the procedure in 0 3 
one finds instead of (2.3): 

implying c 2 ( f )  2: ( E2t) - '  ( t  + 00). 

k = l :  

P(k)= min { E k / E 2 ,  p ( i ) + P ( j ) - l I ;  P ( l ) = E i / E 2 .  
i+]=k 

which is to be solved subject to the initial condition b, = 0, b2 = 1 .  
Contained in the class of systems where dimers are least reactive, are systems 

without monomers, i.e. cl(0) = 0, but c2(0) # 0 and possibly K(1 , j )  < K(2, j ) .  In this 
case the initial condition of (A2.6) is p(1) =a. 
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The example discussed in this section, where dimers are least reactive, may be 
generalised to a situation where I-mers are the least reactive species. In this case one 
finds that ck( t ) / c , (  t )  + bk ( 1  +CO), where bk is the solution o f  

m 

(A2.8) 

to be solved with initial condition bl = 1, bj = O( j < 1). The k-mer concentration behaves 
asymptotically as c k ( t )  - t - B ( k ) ,  where P(k)  is the solution of (A2.6) with E2 replaced 
by Ef. The special case where cf # 0, but cj(0) = 0 ( j  < I )  leads to the same results, now 
with p(1) = . . . = /?(I-  1)  = 00. 

Appendix 3 

In this appendix we restrict ourselves to class I1 kernels and analyse the asymptotic 
solution of the recursion relation, R ( b k )  = 0, given in (2.5). We are in particular 
interested in the large-k solutions of the general form bk = Bk-' (k+oo). To admit 
such solutions, the infinite sum in (2.3) must exist, which imposes the following 
requirement on T :  

.r>max{A, l + A - p ' } = l + A - m  (A3.1) 

as can be deduced from (1.4). Physically acceptable solutions bk (k  = 1 , 2 , .  . .) of the 
recursion relation must be non-negative; therefore the infinite sum in (2.3) must be 
non-negative. This requirement immediately shows that the recursion relation method 
cannot be valid for those class I1 kernels with K (  k j )  - K (  1,  j )  G 0 for k = 1,2, . . . . 
Examples of such kernels can, in fact, simply be constructed if the degree of 
homogeneity A G O ,  e.g. K ( i , j ) = l  or K ( i , j ) = ( i + j ) "  (AGO).  

In the remainder of this section we assume that K ( i , j )  is such that the infinite 
sum in (2.3) is bounded and positive for all k >  1 .  

The result T = 1 + A ,  obtained in (3.12) for the non-gelling models of class I, does 
not lead to a consistent large-k solution of (2.3), because the infinite sum E,  and the 
integral occurring in (3.12) are both divergent for T = 1 + A. The assumption T > 1 + A 
leads to a contradiction, since it implies T = 1 + A  on account of (3.12). These results, 
in combination with (A3.1), set the following bounds on the range of possible values 
of 7: 

(A3.2) 

In this T interval, the infinite sum in (2.3) is convergent, whereas the individual terms 
Ek and El are divergent. 

To determine asymptotic solutions of the recursion relation in class 11, we insert 
the ansatz bk = Bk-' (k  > b) into (2.3) and test for self-consistency. Denoting the first 
and second term in R ( b , )  by R I  and R2 respectively, we find from (1.2), (1.3) and (1.4): 

1 + A  - m  < T <  1 + A .  

and 
kn kn r m  

R2 z -Bk"-' 2 bj + Bk-' 2 K(1, j ) b j  - B2k'+"-2' J dx[K(l ,x)-x"] .  (A3.4) 
j = 1  j = l  ko/ k 
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We note that the first terms in RI  and R, cancel. Since we assume that T is inside the 
interval (A3.2), the integral J" dx  (. . .) in (A3.4) converges, and combination of the 
remaining terms in (A3.3) and (A3.4) yields for the recursion relation (2.3) as k + m :  

(A3.5) 

where Z ( T )  is defined in (A1.7). The coefficient I ( T )  is only well defined if T is 
sufficiently small, so that the integral in (A1.7) converges at the lower limit. This 
imposes the requirement T < 2 + p' ,  since the small x divergences cancel. This require- 
ment is automatically fulfilled. Thus the RHS of (A3.5) dominates over the LHS, and 
(A3.5) can only lead to a consistent solution if the coefficient I (  T )  vanishes, i.e. if the 
transcendental equation 

I ( T ) = o  (A3.6) 

has a solution T = 'TR in the interval (A3.2). Thus, we have found the asymptotic 
solution of the recursion relation, R( b k )  = 0, to be bk - k-'. ( k  + CO), and we note that 
(A3.6) is identical to (4.5), which was the condition that the LHS of (2.6) vanishes in 
case (a), i.e. for T values satisfying (A3.2). 
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